آخرین محصولات ویژه

مقاله بررسی دقت تکنیک شبکه های عصبی مصنوعی در تخمین داده های SCAL و مقایسه آن با برخی روابط متداول تجربی

دسته بندي : شیمی نفت گاز

شبکه های عصبی با ناظر (Supervised Artificial Neural Networks) در کارکرد و روش های محاسباتی از مغز انسان تقلید میکنند. با این وجود این شبکه هاپیش از آنکه نشانه هوشی مصنوعی باشند ابزار میانیابی و برونیابی در فضایی چند بعدی هستند. به عبارت دیگر این شبکه ها زمانی بیشترکاربرد میابند که از سویی شرایط و تنوع ورودی و خروجیها بگونه ای بوده که امکان انجام رگراسیون هایی چند بعدی و یا کشف روابط تجربی، نامعقول و پرخطا به نظر برسد و از سوی دیگر روند ایجاد داده ها با روش های متداول، دشوار، زمانبر و پرهزینه باشد.
طبعا یک شبکه عصبی مصنوعی در مقیاس کاربردی و زمانیکه جهت تخمین استفاده میگردد متشکل از رقمی از ورودی ها و خروجی هاست. هرچند در گام اول چگونگی ارتباط مابین ورودی و خروجی بر ما پوشیده است و لیکن وجود این ارتباط از سوی محققین با استفاده از روش هایی همچون همبستگی نمودار ها و یا روابط تجربی به اثبات رسیده یا حداقل فرض شده است.
در این مقاله در ابتدا به بررسی دقت تکنیک شبکه های عصبی در تخمین داده های نفوذپذیری نسبی حاصل از 81 نمونه مشتمل بر 1078 ست ورودی به شبکه و مقایسه آن با برخی روابط تجربی ارائه شده از سوی مهندسین نفت پرداخته شده است. سپس با استفاده از نتایج حاصل از شبکه ای دیگر، روابط تجربی و شبکه های نخست با تولید داده دینرمالیزاسیون تکمیل شده اند. روش لونبرگ برای آموزش شبکه و تابع محرک خطی در خروجی نرون ها استفاده شده و در مجموع برای هریک ازشش نوع ورودی و خروجی مورد آزمایش قرار گرفته ده نوع از شمار نرون های لایه میانی آزمایش شده اند که به ازاء دو بار تکرار آموزش شبکه نهایتا بیش از یکصد شبکه دراین پروژه مورد آموزش و بررسی قرار گرفته اند. افزون بر این یازده رابطه متداول تجربی مورد آزمایش و قیاس قرار گرفتند و درنهایت دستورالعملی جهت تولید داده های مصنوعی نفوذپذیری نسبی (تنها با استفاده از پارامتر های مطلق Kwater، Kair تخلخل) معرفی شده است.
نتایج حاصله نشان از برتری نسبی دقت شبکه های عصبی داشته و شبکه های تولید شده برای استفاده علاقه مندان آماده و جداولی جهت انتخاب شمار بهینه نرون ها برای انواع مختلف ورودی و خروجی پیشنهاد شده است.

کلمات کلیدی: روش لونبرگ، پس انتشار خطا، شبکه های عصبی مصنوعی، نرمالیزاسیون، آزمایشات ویژه مغزه، SCAL خطای میانگین، دینرمالیزاسیون


دسته بندی: شیمی نفت گاز

تعداد مشاهده: 2915 مشاهده

کد فایل:5129

انتشار در:۱۳۹۷/۱۲/۵

حجم فایل ها:568.4 کیلوبایت

تعداد صفحات: 14

زبان: فارسی

سال انتشار: 1386

محل انتشار: دومین کنگره مهندسی نفت ایران

فرمت: (PDF) غیر قابل ویرایش

منابع و مآخذ: دارد

جدول و نمودار: دارد

عکس و تصویر: دارد


اشتراک گذاری:
 قیمت: 5,000 2,500 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.   پرداخت و دریافت فایل

محصولات مرتبط